SULIT 4541/2 Chemistry Paper 1 Paper 2 Oktober 2009 Marking Scheme

JABATAN PELAJARAN MELAKA

PEPERIKSAAN SELARAS AKHIR TAHUN TINGKATAN 4 MATA PELAJARAN SAINS DAN MATEMATIK SEKOLAH-SEKOLAH MENENGAH NEGERI MELAKA Kelolaan PEJABAT PELAJARAN DAERAH MELAKA TENGAH * ALOR GAJAH * JASIN Dengan Kerjasama : JABATAN PELAJARAN MELAKA JALAN ISTANA, BUKIT BRUANG, MELAKA.

MARKING SCHEME CHEMISTRY

Paper 1 and Paper 2

Skema Permarkahan ini mengandungi 10 halaman bercetak

SKEMA PERMARKAHAN CHEMISTRY 1 4541/1

No soalan	Jawapan								
1	В	11	В	21	В	31	D	41	С
2	D	12	В	22	С	32	A	42	С
3	В	13	D	23	A	33	D	43	В
4	С	14	А	24	В	34	С	44	А
5	A	15	С	25	A	35	A	45	С
6	D	16	D	26	С	36	В	46	С
7	С	17	D	27	С	37	A	47	D
8	С	18	В	28	В	38	С	48	В
9	D	19	С	29	В	39	D	49	С
10	D	20	В	30	A	40	D	50	А

Paper 2 Section A

1	(a)		13		1
	(b)		20// 21		1
	(c)	(i)	Atoms of the same element which have same proton number but different number of neutron		1
		(ii)	B & E		1
	(d)		 (i) correct number of neutron (ii) correct number of proton (iii) correct number of shell and electron 	1 1 1	3
	(e)	(i)	D		1
		(ii)	A		1
	(f)		2.8		1 10

2	(a)	The metal oxide burns / gl- liquid formed	ows // droplets of	f a colourless		1
	(b)	Anhydrous calcium chlorid			1	
	(0)	to dry the hydrogen gas			1	2
	(c)	to dry the hydrogen gas			1	2
	(C)		М	0		
		Mass (g)	92.02 - 42.34	95.86 - 92.02		
		Muss (g)	= 49.68	= 3.84	1	
		No. of mol	49.68/ 207 =	3.84/ 16 =		
			0.24	0.24	1	
		Simplest	1	1		
		mol ratio			1	
			-	·		
		Empirical form	ula is MO		1	4
		L				
	(d)	(i) correct reactant			1	
		(ii) correct product			1	2
		$MO + H_2 \rightarrow M$	+ H ₂ O			9

3	(a)	(i)	Group 1, Period 4	1+1	2
		(ii)	G		1
	(b)	(i)	D ₂ L		1
		(ii)	Soluble in water // High melting/ boiling point // Can conduct electricity in molten or aqueous state		1
	(c)	(i)	Е		1
		(ii)	Nuclei attraction towards valence electrons is weaker in E	1	

		Thus, it is easier for atom of E to release an electron to		
		form a positively charged ion	1	2
(d)	(i)	L/M		1
	(ii)	Covalent bond		1
				10

4	(a)		XY ₃		1
	(b)	(i)	Covalent bond		1
		(ii)	2.5		1
		(iii)	X: Group: 15, Period: 2	1	
			Y: Group: 17, Period: 2	1	2
	(c)		Low melting and boiling point//cannot conduct		1
			electricity// dissolve in organic solvent		
	(e)		(i) correct reactant	1	
			(ii) correct product	1	
			(iii) balance equation	1	3
			$X_2 + 3Y_2 \rightarrow 2XY_3$		9

5	(a)		P:-, Q:+	1
	(b)		To allow the ion to flow through	1
	(c)		- from chemical energy to electrical energy	1
	(d)		Iron / P is more electropositive than copper / Q // iron is	
			placed higher than copper in the electrochemical series	1
	(e)	(i)	Intensity of the blue solution decrease	1
		(ii)	$Cu^{2+} + 2e \rightarrow Cu$	1
	(f)	(i)	copper electrode / R becomes thicker // a brown solid	1
			deposited	
		(ii)	R:- , S:+	1
	(g)	(i)	voltage in Figure 5.2 is higher than in Figure 5.11 / more	1
			than 1.2 V	
		(ii)	The distance between zinc and copper in the electrochemical	1
			series is further than that between iron and copper	10

6	(a)	Strong acid is an acid which ionizes completely in water to produce high concentration of hydrogen ions .	1 1	2
	(b)	Neutralisation		1
	(c)	(iv) correct reactant (v) correct product (vi) balance equation	1 1 1	3
	(1)	$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2 H_2O$		1
	(d)	Pink to colourless		1
	(e)	From the equation in (c). 1 mole of H_2SO_4 reacts with 2 moles of NaOH		

	$ \begin{array}{rcl} 1.0 & \underline{x} & 20.00 & = & \underline{1} \\ M_{\text{NaOH}} & \underline{x} & 25.00 & \underline{2} \\ \end{array} $ $ \begin{array}{rcl} M_{\text{NaOH}} = 1.6 & \text{moldm}^{-3} \\ \end{array} $	1 1	2
(f)	2.0 moldm^{-3}		1
(g)	Twice / 50.00 cm^3		1
(h)	Ammonium sulphate		1
			12

Section B

7	$\langle \rangle$	(*)			
7	(a)	(i)	Bond which formed when two or more atom share the		
			valence electron	1	
			to achieved the stable electron arrangement	1	2
		(ii)	Ionic bond:		
			1. Between atom B and C	1	
			2. Atom B has electron arrangement 2.8.1	1	
			3 .Atom B will donate 1 valence electron	1	
			4 .to achieve the stable electron arrangement	1	
			5 .and become positively charged ion// $B \rightarrow B^+ + e$	1	
			6. Atom C has 6 valence electron	1	
			7. accept 2 electron and become negatively charge ion//		
			$C + 2e \rightarrow C^{2}$	1	
			8. 2 atom B will donate1 electron each to 1 atom C	1	
			9 The force of attraction between ions are very strong	1	
			Covalent bond:		
			10. Between atom C and D	1	
			11. To achieve the stable electron arrangement	1	
			12. One atom D will share 4 electron with 2 atom C	1	
			13. Force of attraction between molecules are weaker	1	13
				1	10

	(iii)	Type of Compound Melting point & Boiling point Electric Conductivity	Ionic compound Higher Can conduct electricity in molten state or aqueous solution Dissolve in	Covalent compound Lower Cannot conduct electricity Dissolve in	1	
		Solubility	water but cannot in organic solvent	organic solvent but cannot in water		3
(b)		Atom L has 2 valer Donate 2 electron t	,	electron	1	2
		arrangement	o denive the stable			2 20

8 (a)		Alkali A – sodium hydroxide/ barium hydroxide / potassium hydroxide strong alkali ionises completely in water to produce high concentration of OH ⁻ Alkali B – ammonia solution	1 1 1 1	
		Weak alkali Ionizes partially in water to produce low concentration of OH ⁻	1	6
(b)		X : methylbenzene/ tetrachloromethane/ any organic solvents Y : water	1	2
	(ii) .	Hydrogen chloride ionizes completely in water to form H ⁺ , so solution X shows acidic properties . Without water, hydrogen chloride exists as molecules There are no H ⁺ present, so solution Y does not show acidic properties	1 1 1 1	4

(c)	Calculation 2.0 x Volume _{acid} = 1.0 x 100 Volume _{acid} = $\frac{1.0 \times 100}{2.0}$ // = 50 cm ³ 1. Use a pipette to draw up 50 cm ³ 2.0 moldm ⁻³ sulphuric acid.	1 1 1 1	
	 Transfer the acid to a 100 cm³ volumetric flask. Add distilled water to bring the level of solution 	1	
	until the calibration mark.	1	
	4. Stopper the flask and shake well.	1	6
(d)	Add powdered lime/ lime stone / ashes of burnt wood	1	
	Reason – weak alkali, can neutralize acidity in the soil	1	2
			20

Section C

9	(a)	Salt is an ionic compound formed when the hydrogen ion		
		in an acid is replaced by a metal ion or an ammonium ion		1
	(b)	Material 2 mol dm ⁻³ nitric acid, copper (II) oxide powder	1	
		Apparatus 250 cm^3 beaker, glass rod, filter funnel, retort stand and clamp, Bunsen burner, 250 cm^3 conical flask, filter paper, evaporating dish, 50 cm^3 measuring cylinder, spatula.	1	
		Procedure 1. Pour 50 cm ³ of 2 mol dm ⁻³ nitric acid into a beaker.	1	
		2. Warm the acid.	1	
		3. Add copper(II) oxide powder bit by bit into the		
		acid.	1	
		4. Stir the mixture .	1	

<u>г</u>	1			1 1
		5. Add copper(III) oxide until some of it no longer	1	
		dissolve.	1	
		6. Filter the mixture.	1	
		7. Heat the filtrate until it become saturated.	1	
		8. Let it cool	1	
		9. Filter out the crystals.	1	
		10. Dry the crystal using the dry filter paper.	1	
		Chemical equation: $2 \text{ HNO}_3 + \text{CuO} \rightarrow \text{Cu(NO}_3)_2 + \text{H}_2 \text{ O}$	1	13
	(c)	(i) Acid + alkali \rightarrow salt + water	1	
		Example: HCl + NaOH \rightarrow NaCl + H ₂ O	1	
		(ii) Acid + metal \rightarrow salt + hydrogen	1	
		Example : $2HNO_3 + Mg \rightarrow Mg(NO_3)_2 + H_2$	1	
		(iii) Acid + base \rightarrow salt + water	1	
		Example: $H_2SO_4 + CuO \rightarrow CuSO_4 + H_2O$	1	
		(iv) Acid + metal carbonate \rightarrow salt + water + carbon dioxide.	1	
		Example:		Max
		$2\text{HCl} + \text{CaCO}_3 \rightarrow \text{CaCl}_2 + \text{H}_2\text{O} + \text{CO}_2$	1	6
				20

10	(a)	fixed position moving. In aqueous s	m chloride consists of ons by strong ionic bor sodium chloride, the io move freely.	ids and are not freely	1	2
			0.1 mol dm ⁻³ silver ni	tate solution, wooden		
		electrodes, electrolytic ammeter, tes	Batteries, carbon elect cell, connecting wires st tube and switch. elled diagram of set-up	with crocodile clips,	1	
		1. An electr	olytic cell is half-fille ate solution.	d with 0.1 mol dm ⁻³		
			rodes are connected to		1	
			with connecting wires.			
			e filled with silver nitr	ate solution is	1	
			over the anode.		1	
			h is turned on and elec	ctric current is allowe	d	
			r 15 minutes.		1	
			ons at anode and catho		1	
			are repeated using sil electrodes.	ver electrodes in plac	e	
		7.			1	
		Observation	ns: Observ	vation		
		Electrode	Anode	Cathode		
		Carbon	Bubbles of colourless gas released, relights a glowing wooden	A shiny, grey solid deposited.		
		Silver	splinter. Silver electrode becomes thinner.	A shiny, grey solid deposited // cathode becomes thicker	1+1	

	Solver nitrate solution consists of Ag^+ , NO_3^- , H^+ , DH^- ions .	1	
d	When carbon is made the anode, OH^- ions are selectively lischarged because they are lower than NO_3^- ions in the electrochemical series to produce oxygen gas $4 OH^- \rightarrow O_2 + 2 H_2O + 4 e$	1	
e	At the cathode, Ag ⁺ ions are lower than H ⁺ ions in the lectrochemical series and are selectively discharged to orm silver metal // Ag ⁺ + e \rightarrow Ag	1	
	When silver is made the anode, silver atoms ionise to form Ag ⁺ ions. The silver anode dissolves // Ag \rightarrow Ag ⁺ + e	1	
e	At the cathode, Ag ⁺ ions are lower than H ⁺ ions in the lectrochemical series and are selectively discharged to orm silver metal // Ag ⁺ + e \rightarrow Ag	1	17
(ii)	Type of electrode// Concentration of electrolyte// position of ion in Electrochemical Series.		1
			20

END OF MARKING SCHEME

SULIT 4541/3 Chemistry Paper 3 October

1 1/2 hours

PEPERIKSAAN SELARAS AKHIR TAHUN TINGKATAN 4 MATA PELAJARAN SAINS DAN MATEMATIK SEKOLAH-SEKOLAH MENENGAH NEGERI MELAKA

Kelolaan : PEJABAT PELAJARAN DAERAH MELAKA TENGAH * ALOR GAJAH * JASIN Dengan Kerjasama : JABATAN PELAJARAN MELAKA JALAN ISTANA, BUKIT BERUANG, MELAKA

CHEMISTRY

Paper 3

One hour and thirthy minutes

MARKING SCHEME

Que	estion		Details	Score
1	(a)	[<i>Able to state the three varial</i> Example,	bles correctly]	3
		Manipulated variable	Position of elements / metals in Group 1 // Position of Group 1 // Position of alkali metals	
		Responding variable	Rate of reaction // Reactivity of the reaction	
		Fixed variable	Volume of water, size of metal used	
	(a)	[Able to state any two variable	les correctly]	2
	(a)	[Able to state any one variable		1
1	(b)	[<i>Able to state the relationship</i> <i>variable correctly</i>] Example,	between manipulated variable and responding	3
		When going down Group 1, a reaction with water //	alkali metals become more reactive in their o1, the more reactive the reaction with water anipulated variable, score = 2	
	(b)	Example, Position metal of Group 1 wi	b between manipulated and responding variable] Il give different reaction when react with water // n, the lower the position of the metal in Group 1	2
	(b)	[<i>Able to state an idea of the h</i> Example, Metal / Element / Group 1 ca		1
1	(c)	 (a) Metal / Element of Gringer (b) Reacts with water [vig (c) [More / Less] reactive Example, Metal of Group 1 in the Period more reactive metal // 	• •	3

	(c)	 [Able to state the operational definition with any 2 statements below:- (d) Metal / Element of Group 1 in the Periodic Table (e) Reacts with water [vigorously / slowly] (f) [More / Less] reactive metal 	2
		Example, Metal of Group 1 in the Periodic Table can react with water at different rate can show their reactivity with water // Element of Group 1 in the Periodic Table react with water at different rate //	
	(c)	 [Able to state the operational definition with any 2 statements below:- (g) Metal / Element of Group 1 in the Periodic Table (h) Reacts with water [vigorously / slowly] (i) [More / Less] reactive metal 	1
		Example, Metal of Group 1 can react with water // Element of Group 1 is a reactive metal	
1	(d)	[Able to state the inference accurately]	3
		Example, The solution produced is a strong alkali	
	(d)	[Able to state the inference correctly]	2
		Example, The solution produced is an alkali // The solution is an alkali	
	(d)	[Able to give idea for inference]	1
		Example, Alkali	
1	(e)	[Able to state the relationship accurately]	3
		Example, The lower position of the metal in Group 1, the higher the reactivity of the metal towards water // The higher position of the metal in Group 1, the lower the reactivity of the metal towards water	
			I

	(e)	[Able to state the relationship correctly but	t less accurate]	2
		Example, The reactivity of the metals is inversely progroup.	oportional to their position in the	
	(e)	[Able to state an idea of a retionship]		1
		Example, Position of metals / elements affects the rea Position of metals / elements affects the rea	-	
1	(f)	[Able to arrange the metals in descending]	order based on their reactivity]	3
		Example, Rb, K, Na, Li // Rubidium, Potassium, Sodium, Lithium // Rb \rightarrow K \rightarrow Na \rightarrow Li		
	(f)	[Able to arrange the metals in ascending o	rder based on their reactivity]	2
		Example, Li, Na, K, Rb // Lithium, Sodium, Potassium, Rubidium // Li \rightarrow Na \rightarrow K \rightarrow Rb		
	(f)	[Able to arrange the position of at least based on their reactivity]	three metals in descending order	1
2	(a)	[Able to record the readings to two decima	l places accurately with unit]	3
		Example,		
		The mass of combustion tube and porcelain dish	195.03 g	
		The mass of combustion tube, porcelain dish and copper oxide	197.06 g	
		The mass of combustion tube, porcelain dish and copper	196.64 g	
		# Score = 2 if no unit		

		[Able to record the readings correctly but unit]	still with four decimal places with	2
		Example,		
		The mass of combustion tube and porcelain dish	195.0265 g	
		The mass of combustion tube, porcelain dish and copper oxide	197.0572g	
		The mass of combustion tube, porcelain dish and copper	196.6362 g	
		<pre># Score =1 if no unit [Able to record only any 2 readings correct]</pre>	ctly without 2 decimal point and	1
		unit]		
2	(b)	[Able to show the calculation of the mass a	ccurately with unit]	3
		Example, Mass of copper = $(196.64 - 195.03)$ g = 1.51 g		
		Mass of oxygen = $(197.06 - 196.64)$ g = 0.42 g	5	
		[Able to show the calculation of the mass c	orrectly but without unit]	2
		Example, Mass of copper = $(196.64 - 195.03)$ g = 1.51		
		Mass of oxygen = $(197.06 - 196.64)$ g = 0.42	, ,	
		[Able to show any one of the mass correct	ly <u>with or without </u> unit]	1
		Example, Mass of copper = 1.51 g or		
		Mass of oxygen $= 0.42$ g		

2	2 (c) [Able to determine the empirical formul accurately] 3			3		
		Example,				
		1	Elements	Cu	0	
		Point 1	Number of mole // mole , mol	1.51/64	0.42/16	
				= 0.03	= 0.03	
		Point 2	Simplest ratio	1	1	
		Point 3	Empirical formula : CuO			
		[Able do determ	ine the empirical formula inaccur	ately]		2
		Example,				
		• Point no. 1 o	or 2			
		 Point no. 3 	2			
		[Able to write th	e empirical formula]			1
		Example,				
		Point no. 1 c	or 2 or 3			
2	(d)	0	e statement that shows the number	• •	opper atom	3
		and number of n	nole of oxygen atom that have been	n reacted]		
		Example,				
		-	atom reacts with 1 mol of oxygen	atom.		
			e ratio of number of mole of copp	er atom and	mole of oxygen	2
		atom that have b	peen reacted]			
		Example:				
		1 mol of copper	atom(Cu): 1 mol of oxygen atom ((0)		
		Or				
		Cu:O				
		1:1				
		[Able to show th	e ratio of number of mole of coppe	er atom and n	umber of mole	1
			that have been reacted]		v	
		Example :				
		1:1 //1//1 mo	ble			
2	(e)	Able to state the	e change in colour correctly]			3
		Example				
		Example, Black to brown	// Black \rightarrow brown			

	1		
		[Able to state the change in colour less correctly]	2
		Example,	
		Turn to brown // brown	
		[Able to give a relevant colour]	1
			1
		Example,	
		Colour change// any colour other than brown	
2	(f)	[Able to classify all the metal oxides with their chemical formulae correctly]	3
		Example,	
		Metal oxide Chemical formula	
		Lead(II) oxide PbO	
		Silver oxide Ag ₂ O	
		Tin(IV) oxide SnO2	
		Iron(II) oxide FeO	
		[Able to classify any three of the metal oxides with their chemical formulae	2
		correctly]	
		[Able to classify any two of the metal oxides with their chemical formulae	1
		correctly]	
	Quest	ion 3	
3	(i)		
		[Able to state the aim of the experiment correctly]	
		Example,	~
		To study the electroplating of <u>copper</u> on a silver ring using <u>electrolysis</u> //	3
		To produce the electroplating of copper on a silver ring using <u>electrolysis</u> //	
		To investigate the electroplating of a silver ring with <u>copper</u> using <u>electrolysis</u>	
	(i)	[Able to state the aim of the experiment less accurately]	
		[is to brain the wint of the experiment tess decurrently]	
		Example,	
		To study the electroplating of silver ring	2
			2
1			

	(i)	[Able to give an idea for the aim of the experiment] Example, Silver ring coat with copper // Silver ring change colour Silver ring become brown ring // Ring change colour	1
3	(ii)	[<i>Able to state every variables accurately</i>] Example, Manipulated variable : Position of the silver ring as an electrode // Position of the silver ring as anode Responding variable : Deposition of copper on the silver ring // Colour change of silver ring Constant variable : Type of electrolyte / [copper(II) sulphate solution / copper(II) chloride solution / copper(II) nitrate solution] // Copper strip/electrode as the anode // Concentration of electrolyte // Duration of electrolysis	3
			2
	(ii) (ii)	[Able to state only 2 variables accurately] [Able to state only 1 variables accurately]	2
	(**)		-
3	(iii)	[<i>Able to state complete materials and apparatus to conduct the experiment</i>] Example, <u>Material</u> : 1 – 2 mol dm ⁻³ [copper(II) sulphate solution / copper(II) chloride solution / copper(II) nitrate solution] 200 ml, copper electrode / strip and silver ring <u>Apparatus</u> : Dry cell / Batteries, Beaker 250ml, connecting wires with crocodile clip / wires, sandpaper, ammeter and switch	3
	(iii)	[<i>Able to state materials and apparatus to conduct the experiment</i>] Example, <u>Material</u> : [Copper(II) sulphate solution / Copper(II) chloride solution / Copper(II) nitrate solution], Copper strip/electrode and silver ring <u>Apparatus</u> : Dry cell / Batteries, Beaker (any container except test tube and boiling tube), Connecting wires with crocodile clip / wires and sandpaper	2

	(iii)	[Able to state materials and apparatus to conduct the experiment less complete] Example, <u>Material</u> : [Copper(II) sulphate solution / Copper(II) chloride solution / Copper(II) nitrate solution], Copper strip/electrode, silver ring <u>Apparatus</u> : Dry cell / Batteries, Beaker (any container except test tube and boiling tube), Connecting wires with crocodile clip / wires					
3	(iv)	 [Able to state the complete procedure to conduct the experiment] [Example, Silver ring is cleaned with sandpaper [Copper(II) sulphate solution / Copper(II) chloride solution / Copper(II) nitrate solution] is poured into a beaker The apparatus is set-up using a silver ring as the cathode and copper attin/cleatrode as the appade // Silver ring is used as actual apparatus 					
		 strip/electrode as the anode // Silver ring is used as cathode and copper strip / electrode is used as the anode. 4. The switch is turned on for 30 minutes 5. The silver ring is removed from the electrolyte and it is dried 6. The colour change of the silver ring is recorded. 					
	(iv)	[<i>Able to state the procedure to conduct the experiment</i>] ## Procedure no. 1, 2, 3, 4 and 5.					
	(iv)	[<i>Able to state the minimum procedure to conduct the experiment</i>] ## Procedure no. 2 and 3					
3	(v)	[Able to construct a table with the aspect: (1) Correct title, (2) Correct electrode] Example, Electrode Observation Anode Cathode Copper strip / Silver ring					

(v)	[<i>Able to construct a table with the correct title</i>] Example,					
	Electrode		Observation	2		
	Copper strip / Copper electrode	Silver ring				
(v)) [Able to construct a table with an idea]					
	Example,					
	Electrode Observation		Observation	1		