SPM 2017 SCIENCE EXAM TIPS (NOTA TAMBAHAN untuk KERTAS 1)

Mesti Download untuk dibaca

HURRY ORDER The real Exam Tips with sample Questions and model answers

FORM 4 CHAPTER 2 BODY COOERDINATION

8. Neurone / nerve cell

- Is the basic functional unit of the nervous system.
- To receive and transmit nervous impulses.

9 a. Cell body

- Control and activity of the neuron.

b. Dendrites and Dendrons.

- i. Received impulses and
- ii. Send impulses to the cell body.
- c. Axons
 - Carry nerves impulse along the nerve.

d. Myelin Sheath

- Insulates, protect axon and speed up the transmission rate of nerve impulses along the nerve fibre.

10. Kinaesthesis Sense

- a. contains proprioceptor / stretch receptors found in muscle, ligaments, tendons and joints.
 - i. To maintain the body balance and coordination without looking at.
 - ii. Detect the movement, change of position, muscle stretching, contraction or twisting.

b. Example,

- i. Walking on rope by an acrobat
- ii. Buttoning shirt, cycling.
- iii. Tying shoe string
- iv. Typing, clapping or walking up stairs.

v. Estimate the weight or length of an object

Nerve fibre (send impulse to the brain)

Proprioceptor

2.5 Differences between voluntary actions and involuntary actions.

Voluntary actions	Involuntary actions
- Under conscious	- Not under conscious
control based on	control (automatic).
our needs.	- No learning is
- Learning is	required.
required.	_
- The same stimulus	- The same stimulus
may lead to	always produces the
different response	same response.
depending on	
different situations.	
- Controlled by the	- Controlled by the
cerebrum.	medulla oblongata
	or spinal cord.
- Can be quickened	- Can't be quickened
or slowered down.	or slowered down
- eg: writing,	- eg: heartbeat,
speaking, reading	breathing, yawning,
and dancing.	respiration
	digestion, growing.

2.6 Human Brain

- Pituitary gland (master gland) that can control all the other glands.

(voluntary's actions) Cerebellum (control body equilibrium / balancing and contraction or relaxation of muscles)

Spinal cord (reflex action)

Medulla oblongata (involuntary's actions)

- 1. Protected by cranium.

- 2. Outer layer is grey matter which consists of cell bodies for the growth of the brain.
- 3. Inside is white matter which consists of nerve fibers (axons).
- 4. The brain is highly folded to increase the surface area to pack more neurons.
- 5. Divided into right and left cerebral hemispheres which control opposite side of the body movements.
- 6. a. **Cerebrum**(biggest part)

b.

- Voluntary actions eg: Speaking, reading, walking, thinking, swimming

Cerebrum consist of:

i. Sensory area	Touch, sight, smell,			
	taste, hearing			
ii. Motor Area	Movement of muscle			
iii. Association area	Thinking, speech memory, reasoning, imagination.			

c. Cerebellum

- Maintaining body posture, equilibrium or body balancing. Control contraction and relaxation of muscles.

d. Medulla Oblongata

- Controls in involuntary actions, e.g. heartbeat, breathing, circulation of blood, peristalsis, swallowing, growing, digestion and respiration, yawning.
- If injured, the person will die.

5. Body coordination – to coordinate body's responses towards stimuli						
Body C	coordination					
Nervous system	Endocrine system					
a. SIN	IILARITY					
i. Carry out body's responses towards stimu	i.					
ii. Both involve four component; stimulus, re	ceptor, effector and response.					
iii. Coordinate all body activities and response	es					
iv. Ensure survival of life						
b. DIF	FERENCES					
i. Consists of the brain, spinal cord and	i. Consists of endocrine / ductless glands .					
neurons / nerves.	ii. In form of chemicals known as hormones in					
ii. In the form of electric impulses.	the bloods.					
iii. Comes from inside and outside the body.	iii. Comes from inside the body.					
iv. Fast and often does not last long.	iv. Most of them are slow and long lasting.					
v. Normally localized like the organs and	v. Normally widespread and covers the whole					
glands	body.					
vi. No feedback mechanism.	vi. Has feedback mechanism and response.					

FORM 4 **CHAPTER 3 HEREDITY AND VARIATION**

'v

Type of chromosomes (46) 4. a.

Autosomes	Sex
22pairs	1pairs
= 44	= x / y

	Autosome		Sex		Total
Male	44	+	xy	=	46
Female	44	+	xx	=	46

b. Chromosomes in Gametes

sperm = 22 + x / 22 + yovum = 22 + x

C.

5. Sex of baby:

a. The probability of having a male or female child is the 50% because half of the sperms carry *y* chromosome and half of other sperms carry *x* chromosome (Ratio 1 : 1)

b. The sex of the baby is determined by the sex chromosome in the sperm.

9. Mutation

a. is the sudden change to the structure of genes or **number** of chromosomes

b. can be caused by **mutagen** such as

- i. chemical substances (e.g. pesticide, nicotine in cigarettes, drugs, nitrogenous acid, preservatives, colouring or artificial sweetener)
- ii. **radioactive radiation** (gamma ray, ultraviolet, *x*-ray)
- iii. temperature (too high or low)

c. Advantages

- i. cause variation to enable organism to adapt to the environment (more resistant to diseases, weather or pollutant)
- ii. creation of new species.

d. Disadvantages

- cause diseases (colour blindness, haemophilia, anaemia or klinefelter's syndrome, polydactyl trait)

Hereditary Diseases caused by					
e. Mutation Gene f. Mutation Chromosomes					
- change in the structure of gene	- changes in the number of chromosomes by mutagen.				
in the chromosomes <i>x</i> of the	i. eg. Down's syndrome (has small slanting;				
recessive gene by mutagen.	mentally retarted and square face) (47				
- eg.	chromosomes) presence of one extra				
a. albinism	chromosomes at the 21 st pair of chromosome.				
b. haemophilia (blood unable	unable ii. Klinefelter's syndrome (has small testis and				
to clog)	sterile) (47 chromosomes) presence of one extra x				
c. anaemia.	(44 + xxy) chromosome at the sex chromosome				
d. colour blindness (unable to	(<i>xxy</i> in the male)				
differentiate between red and	iii. Turner's syndrome (45 chromosomes) lacks one				
green)	x chromosome (xo in the female) $(44 + ox)$.				
	Secondary sexual characteristic fail to develop.				

10. Genetic Engineering is to improve the quantity and quality of Crops / livestock

- a. In Medicine to identify heredity / sex linked disease.
- b. In Agriculture-: i. Improve the quality of breeds
 - ii. Bring in new species with higher resistance to disease or pests or environment
 - iii. Increase production

11. Medicine

- Most heredity disease like colour blindness, haemophilia and albinism are caused by recessive genes or sex linked genes (*x* chromosomes).

FORM 4 CHAPTER 4 MATTER AND SUBSTANCES

3.

move slower / release heat / kinetic energy decrease

Solid	Liquid	Gas
i. Particles are arranged	i. Particles are not orderly	i. Particles are further
closely and orderly in fixed	arranged	apart
positions.	ii. Cannot be compressed.	ii. Move freely in random
ii. Cannot be compressed.	iii. Particles keep contact with	in all direction.
iii. Vibrates at their fixed	one another with spaces	iii. Attraction force is very
positions.	between particles.	weak and compressible
iv. Attraction forces are very	iv. Move freely	(because they are far
strong	v. Attraction forces is weak.	apart).
v. Kinetic energy is very low	vi. Kinetic energy is higher.	iv. Kinetic energy is the
		highest.

14. a. Characteristic or Properties of Metals and Non-Metals

	Metal	Non-Metal
a.	Shinny and lustrous	a. Dull
b.	Ductile; can be pulled into a wire.	b. Brittle or fragile and breaks easily
c.	Malleable; can be beaten into thin sheet because atoms	c. Not malleable
	in metal can slide over one another easily.	d. Weak and snaps easily
d.	Tensile; very strong because of strong metallic bonding.	e. Insulator
e.	Good conductor of electricity because of free electrons.	f. Poor conductor of heat
f.	Good conductor of heat.	g. Low density
g.	Very dense because atoms in metal are closely packed.	h. Low boiling or melting points
h.	Very high boiling and melting points because of very	because of weak Van der Waal
	strong atomic / metallic bonding.	force.
i.	e.g. iron, gold, copper, aluminium, zinc.	i. e.g. sulphur, glass, chlorine,
j.	Aluminium is used as food wrapper.	sulphur and diamond.
k.	Gold is used to make jewellery because malleable	j. Diamond is very hard and used to
	(easily slide over one another), shinny and non-rusting.	cut glass.

b. Pure Substances

- i. **Distilled water** is pure water because it does not contain any dissolve substance or foreign matter.
- ii. The boiling point of pure water is 100° C and melting point is 0° C.
- iii. However **impurities** such as salt can **increase the boiling point** to 102 °C and lower the **melting** / **freezing** point to -2 °C.
- iv. Ice-cream hawkers add salt into the ice box to lower the melting point of ice to prevent the ice cream from **melting too quickly**.
- v. Workers add salt on the road during winter to prevent the snow from melting too quickly.

16.a. Purifying Substances

Distillation (to obtain pure liquid)

- Is the process of **boiling** the liquid and **condensing** the vapour into **pure liquid**.

Distillation of salt water

Note: Mixture of water and salt can be separated by distillation as they have different boiling point.

- b. Crystallisation (to obtain pure solid / salt / sugar)
 - Is forming of pure sugar crystal from a hot saturated solution of a sugar when it is cooled.
 - e.g. mining **salt** (sodium chloride) from sea water / obtaining sugar from sugar solution / solid copper sulphate.

Obtaining pure salt crystal

FORM 4 CHAPTER 5 ENERGY AND CHEMICAL CHANGES

2. Heat change in Chemical Reaction

a. Exothermic reaction	b. Endothermic reaction	
(releasing heat to form bond)	(absorb heat to break bond)	
- Surrounding temperature increase	- Absorb heat to break bonds.	
- Examples: Temperature of the solution rise when	- Surrounding temperature lowered	
Sodium hydroxide crystals dissolve into water	- Examples:	
i. magnesium ribbon is burned in air	i. solid Ammonium Chloride is	
ii. calcium hydroxide or zinc reacts with dilute	dissolved in water	
hydrochloric acid	ii. solid Potassium Nitrate dissolve	
iii. concentrated sulphuric acid is dissolved in	in water	
water	iii. reaction of Zinc and Copper	
	Sulphate	

3. Reactivity Series of Metals

a. Very reactive	Potassium Sodium Calcium Magnesium Aluminium	React with water React with steam Keact with steam Keact with by drogen	React with oxygen
Less reactive	Zinc Iron Lead Tin Copper	React with acid \rightarrow salt + hydrogen	$\rightarrow \text{metal oxide}$
Non- reactive	Mercury Silver Platinum Gold	Free pure elements	

b.	Metal	+	Water / steam	\rightarrow	Alkali	+	Hydrogen
	Magnesium	+	Water	\rightarrow	Magnesium hydroxide	+	Hydrogen
	Aluminium	+	Steam	\rightarrow	Aluminium oxide	+	Hydrogen

* more reactive metal produce more hydrogen

c.

Reactivity of metal with acid/water

Metal	+	Acid	\rightarrow	Salt	+	Hydrogen
Zinc	+	Sulphuric acid	\rightarrow	Zinc sulphate	+	Hydrogen
Iron	+	Hydrochloric acid	\rightarrow	Iron chloride	+	Hydrogen

- i. Aim: To determine the reactivity of different metal with acid
- ii. **Hypothesis**: Zinc produces more hydrogen gas than iron and copper. **Variables:**
- iii. Manipulated variable: type of metal
- iv. Responding variable: volume of gas collected
- v. Constant variable: mass of metal / volume of acid
- vi. Inference: Zinc is more reactive then iron and copper
- vii. Operational definition of
- viii. Rate of reactivity: Volume of gas collected
- ix. Conclusion: Difference metal has different rate of reactivity with acid
- b.ii. Extraction of metal by carbon located below carbon in the reactivity series are extracted by the reduction method by carbon, such as Zinc, Iron, Tin, Lead, and Copper.

iii. Carbon is used because carbon is more reactive than tin.

Electrolysis

Break compound into its elements using electricity (Electric energy \longrightarrow Chemical energy)

1 a. Electrolysis of Copper Chloride Solution

iii. Electroplating of metals

b. Electrolysis used for

- i. Extraction of metals
- ii. Purification of metals

2a. Extraction of Metals (Aluminium from bauxite)

Note: (i) The solution must contains the ionic which is **same as the metal of the anode plate.

(ii) Copper (ll) sulphate solutions colour remain because the copper ions that deposited onto the cathode is replaced by copper ions that dissolved from anode

c. Electroplating of Metals (Electroplating iron nail with copper)

**Note: Copper (ll) sulphate solutions colour unchanged because the copper ions that deposited onto the cathode is replaced by copper ions that dissolved from the anode.

- i. The aims / advantage of electroplating:
 - a) Prevent the metal from corrosion (rusting)
 - b) Make the metal look more attractive
- ii. The following methods should be taken into consideration to obtain a good quality and attractive electroplated product.
 - a) The surface of the metal to be plated must be clean by sand paper beforehand.
 - b) Electric current supplied should not be too big
 - c) Dilute electrolyte should be used.
 - d) The period of electroplating should take a longer time.
 - e) The nail must be rotated slowly.
- iii. The metal used in anode must same with the metal compound solution.

iv. The electrolyte must has same type of metal ion with the anode

Electrical Energy from Chemical Reaction

1. Simple cell

(Chemical energy \longrightarrow Electrical energy)

- i. The less reactive metal like **copper** is made the positive electrode (anode).
- ii. The more reactive metals like **zinc** is made the negative electrode (cathode) because this metal is more likely release electrons to form ions.
- iii. No electricity is produced when both metals are the same.
- iv. The further the metals apart, the higher the voltage/current is produced.

2.	Cells			
	Primary	Secondary		
	- Non-rechargeable.	- Rechargeable.		
	- eg:	- eg:		
	a. dry alkaline battery (used in torch light)	a. lead acid accumulators (used in car)		
	b. silver-oxide mercury battery (used in	b. nickel-cadmium battery (used in		
	watches/calculators)	handphone)		

3. a. Dry Cell/Alkaline bateries – used in torch light / portable radio.

Cross section of a dry cell

- i. Ammonium chloride paste as electrolyte.
- ii. Carbon powder to reduce the resistance.
- 4. Lead Acid Accumulator (rechargeable) used in car.

FORM 4 CHAPTER 6 NUCLEAR ENERGY

Nuclear Energy and its uses

5. Producing nuclear energy through

- A high energy neutron bombards a uranium nuclease to s plit into two lighter nuclei

with the release of three neutrons and heat or nuclear energy and radioactive rays.

b. Chain reaction

- Is continuous of nuclear fission

iii. Manganese oxide to oxidizes the

b. Advantages of dry cell

non-spill over

c. Disadvantage

small light and portable.

non-rechargeable.

short life span.

-

-

-

hydrogen gas produced into water to

reduce the polarisation of the cell.

- 6. Nuclear Fusion
 - Combination of two light nuclei to form a bigger nucleus with the release of energy

- Example: Two hydrogen atoms combine to form a helium atom with the releasing of nuclear energy in the core of the Sun.
- Occur naturally in the core of the Sun.
- 7. Uses of Nuclear Energy

- To produce electrical energy in a nuclear reactors using uranium.
- To move submarine / carrier
- To make nuclear bom

FORM 4 CHAPTER 7 LIGHT, COLOUR AND LIGHT

4. Camera

Ray diagram showing formation in a camera

		Function	
a	Diaphragm	Control the amount of light	
b	Aperture	Allow the light to enter	
c	Shutter	Control the duration of light	
		exposure	
d	Focus	Adjust the position of the	
	adjuster	image on the film./ produce	
		sharp image.	
e	Film	Formation of image / capture	
		image	

Image formation in an eye

-						
5.	Type of image					
	a) Real	b) Virtual				
	- eye	- microscope				
	- camera	- telescope				
	- convex lens	- mirror				
		- periscope				
		 magnifying glass 				
		- concave lens				
		- convex lens				

Formation of Image by Optical Instruments

- 1. Mirror(reflection of light)
 - **Periscope** in submarine, double-decker bus or too see over the wall.

2. Convex lens a. Magnifying glass

b. Telescope – the image is at infinity, virtual and inverted.

c. **Microscope** – the final image is virtual, inverted and enlarged.

-
$$f_0 < f_e$$

d. **Human eye** – image formed are real, inverted, and diminished.

Pupil smaller in bright light

ii.

i.

The focusing of a far object

The focusing of a near object

e. Camera

- amount of light entering a camera depends on:
 - i. The size of the aperture (diagram).
 - ii. The shutter speed.
- Image formed:
 - i. real,
 - ii. upside down (inverted)
 - iii. smaller size (diminished)
 - iv. shorter image distance

f. Pin-hole Camera

3. Comparison between Human Eyes and Camera.

	Human Eyes	Camera
i.	Eye lens	convex lens
ii.	Iris	diaphragm
iii.	Pupil	aperture
iv.	Retina	film
v.	Ciliary muscles	focusing ring

4a. Light Dispersion Using Prism

- i. White light disperses because white light consists of different light colours.
- ii. which travel at different velocities
- iii. refracted at different angles when dispersed by a glass prism.
- b. When the spectrum is combined, a white light is produced

- c. Natural phenomena of dispersion of light/ spectrum.
 - i. Rainbow
 - ii. Soap bubbles

5. Light colour

WWW.ANDREWCHOO.EDU.MY

a. Primary colours

- Original colour that can't form by any combination of light colours.
- Red + Blue + Green = White

b. Secondary colours

- consists of two primary colours combined together.

Primary	+ Primary	\rightarrow Secondary
i. Red	+ Blue	\rightarrow Magentha
ii. Red	+ Green	\rightarrow Yellow
iii. Blue	+ Green	\rightarrow Cyan

- 6. Colour filter.
 - a. Only allow light colour which is **same** colour to pass through.

7. Colour object

- a. Only reflect light colour which is **same** colour with the object
- b. Other colours are absorbed

8. Phenomenon of Scattering of light a. Sky looked blue

- The blue, indigo and violet lights are scattered by air molecules to the sky causing the sky looked blue.

- b. Sunrise / sunset looked reddish in colour
 - The blue, indigo and violet lights are scattered by air molecules. Only red and yellow lights reach our eyes make the sunset / sunrise looked reddish in colour.

Red light is scattered less

9. Formation of rainbow (light dispersion)
After raining, the water droplets in the atmosphere act as glass prism and dispersed

WWW.ANDREWCHOO.EDU.MY

the sunlight to form a spectrum of light called rainbow.

- lizard can camouflage itself same colour as surrounding colour
- to protect themselves from enemy.

- 10. Important of colour
 - make peacock has colourful feather to attract mate

FORM 5 CHAPTER 2 NUTRITION AND FOOD PRODUCTION

NUTRITION AND GOOD EATING HABIT

1. Calorific value.

- Is the energy content of a food / energy produced when 1 g of food completely burnt in air.
- Can be measured by using a Bomb Calorimeter.

2a. Calorific value of

- i. Carbohydrates $= 17.2 \text{kJ g}^{-1}$
- ii. Protein = 22.2kJ g⁻¹
- iii. Fats = 38.5kJg^{-1} (2 x carbohydrates) (highest calorific value)

1 calorie = heat required to rise 1 g of water to 1°C

Vegetables, vitamins, water and minerals do not contain any energy at all. b. A pupil takes 20g of bread and 100g of

milk. What is the total energy consumed?

Answer:

Bread: $20g \times 17.2kJg^{-1} = 344kJ$

Milk : $100g \times 22.2kJg^{-1} = 2220kJ$

 $Total = \underline{2564 \ kJ}$

FORM 5 CHAPTER 3 PRESERVATION AND CONSERVATION OF THE ENVIRONMENT

1. Natural cycles include

a. Nitrogen cycle b. Carbon cycle c. Water cycle 2a. Nitrogen cycle **Atmospheric nitrogen** Death animals / plants Nitrogen fixation Lightning Decomposition (Nitrogen – fixing (Putrefaction) Denitrifying bacteria in root nodules) bacteria **Ammonium compound** Nitrates in the Nitrifying bacteria soil

b. Carbon cycle

c. Water cycle

3. Food Chain - is transfer of energy from the producer to consumers.

a. greenhouse effect

- i.Reduce extensive logging and land clearing. **Encourage tree replanting** / reforestation
- ii.Reduce vehicles on the road
- iii.Fix filter on the chimney
 - use public transport
 - practice car-pool system
 - use unleaded petrol

- recycle of rubbish
- use biological control of pest.

7. Ozone

WWW.ANDREWCHOO.EDU.MY

- a. consists of three oxygen atoms
- b. protect the earth from harmful ultraviolet
- c. can be depleted by chlorofluorocarbon (CFC)

8. Chlorofluorocarbon (CFC)

- a. it chlorine atoms set free when chlorofluorocarbon exposed to ultraviolet rays.
- b. these chlorine atoms deplete the ozone molecules
- 9. Effects of ultra violet rays caused:
 - a. skin cancer
 - b. eye cataract / mutation
 - c. weakens body immune system destroy phytoplankton / kill algae which is food for fish/extinction of aquatic life
 - d. cause ecosystem unbalanced / global warming
- 10. Effort to save ozone layer - replace *CFC* with *HFC*
- 11. Greenhouse effect caused by carbon dioxide.

- trap heat in our atmosphere and cause greenhouse effect or global warming
- produced by burning of fossil fuel, exhaust from vehicles, extensive

logging/deforestation due to urbanization, open burning or opening land.

12. Effects of Greenhouse effect / Global warming

- a. sea levels increase due to iceberg melting at the poles of the earth
- b. droughts which causes low yield of crops and famine

13. Carbon monoxide

- from exhaust fumes of vehicles can reduce intake of oxygen to the brain.
- 14. Sulphur dioxide, carbon dioxide and nitrogen dioxide can cause acid rain which carrode buildings and roof-top.
- 15. (Euthrophication Process) Excessive chemical fertillser can dissolve into rain water and flow into pond cause algae to grow. When algae dies, it decays and reduces the amount at oxygen and cause the fish to die.

16. Ways to increase fertility of soil

- i. practice rotation planting
- ii. grow leguminous plants
- iii. practice alternate planting
- iv. use chemical / organic fertilizer.

17.	Type of pollution	Effect
	Air pollution	Haze, bronchitis,
		asthmatic
	Water pollution	Cholera, extinction
		of aquatic life
	Sound pollution	Deafness

FORM 5 CHAPTERS 4 Carbon Compounds

1. Carbon Compounds

- a. **Carbon** is a non-metallic element but conduct electric.
- b.

Carbon				
Diamond	Graphite			
 hardest form of carbon 	 soft and slippery 			
– used to make jewellery	- Used to make pencil's lead			
 can cut glass 				

c.	Carbon Compounds				
Organic	Inorganic				
 Derived from living things (plant Contain a lot of carbon atoms e.g. C₆ H₁₂ O₆. Dissolve in organic solvents such alcohol, petrol or chloroform. Has low melting or boiling points e.g. alcohol, sugar, fats, protein, f hydrocarbon (petroleum, coal, na 	 Contains few carbon atoms e.g. CO₂. Dissolve in inorganic solvents such as water, acids and alkalis. Generally more stable with high melting / boiling points. 				
 2. Hydrocarbon a. Consists of hydrogen and carbon elements only. b. Natural sources of hydrocarbons are finels such as: i. Coal ii. Natural gas such as ethane, butane propane 	has different boiling points.				
iii. Petroleum	etroleum gasfor cooking				
المحت الم	etrol (40°C - 75°C)for vehicles				
	Naphtha (75°C – 150°C)for making candle				
K	Cerosene (150°C - 230°C+for jet fuel				
Petroleum Petroleum	Diesel (220°C - 250°C)for heavy vehicles like lorry, bus Aubricating oilfor lubrication 250°C - 350°C)				
	<mark>Bitumen</mark> for road tar and cable >350°C)				
iii. Fraction of petroleum and its uses	5.				

Fraction	Main uses		
1. Petroleum gas	- Fuel for cooking and making plastic.	▲ Earlier fractions	
2. Petrol	- Fuel for motorcycles, cars and aeroplanes (vehicles).	Lower boiling point Less dense / lighter	
3. Naphtha	- Fuel for airplanes and making synthetic rubbers / candle.	Less viscous Less yellowish	
4. Kerosene	 Fuel for jet planes and kerosene lamps and for making detergents. 	Less carbon / soot Better fuels	

5. Diesel	- Fuel for diesel engines and boilers.		
6. Lubricating oil	- Engine lubricant and to make polish.	More dense / heavy	
7. Fuel oil	- Fuel for ships and electrical generators.		
8. Paraffin	- For making wax and polish.	More carbon / soot	
9. Bitumen	 For covering roads and as a coating for underground pipes. 	↓ Higher boiling points	

Fats – consists of carbon, hydrogen and oxygen.			
a. Saturated	b. Unsaturated		
- contains maximum hydrogen atoms.	- still can receive hydrogen atoms		
- Mainly animal fats.	- Mainly plant oil.		
- Solid in room temperature.	- Liquid form in room temperature.		
- Raise cholesterol level.	- Cholesterol free		
- Higher melting point.	- e.g. palm oil, corn oil, peanut oil, soy oil, olive		
- e.g. butter, cheese, ghee, meat	oil		
- e.g. butte r, cheese, ghee , meat	011		

10. Hydrogenation process

Unsaturated fat	+	Hydrogen	\rightarrow	Saturated fats
(plant oil)				(margarine)

19. Natural Rubber / latex

a. Polymer latex is formed from monomer isoprene

b. Properties of rubber / latex

- i. soft, low melting point, not resistant to heat
- ii. elastic, insulator to electricity
- iii. dissolves in organic solvents such as benzene or carbon disulphide

20. Coagulation of latex

- a. Rubber is consists of polymer molecules which is surround by a protein membrane which is negative charged.
- b. These negative charged repel one another and prevent the rubber molecules from coagulate.
- c. When acid (formic acid) is added, positive charged hydrogen ions from the acids

neutralize the negative charges on the protein membrane.

- d. When the rubber molecules collide one another, the protein membranes break
- e. The rubber molecules are released and combined to coagulate

- 21. When expose to air, bacteria in the air can produce **lactic acid** which coagulates the latex as well
- 22. Ammonia or any alkali solution can be added to latex to prevent coagulation

because negatively charged hydroxial ions of ammonia solution can

- i. neutralize any positively charged hydrogen ions from acids that presence
- ii. prevent the growth of bacteria.

23. Vulcanisation of rubber

 a. Natural rubber which is soft, easily stretched and cannot withstand heat can be vulcanised with sulphur to be more hard, elastic, resistant to heat and stronger.

- b. Vulcanised rubber is used to make
 - i. tyres
 - ii. rubber hose
 - iii. basket ball
 - iv. Shoe sole
 - v. Industrial glove

FORM 5 **Chapter 5 MOTION**

SPEED, VELOCITY AND ACCELERATION

Distance $= ms^{-1}$ b. Velocity = $\frac{\text{Distance with direction}}{ms^{-1}} = ms^{-1}$ 1 a. Speed = -Time Time taken c. Acceleration

- is change of velocity per unit time

- Acceleration =
$$\frac{\text{Change of velocity}}{\text{Change of velocity}} = \frac{\text{Final velocity} - \text{Initial velocity}}{\text{Change of velocity}}$$

 $a=\frac{v-u}{t}=ms^{-1}$

Time taken

MOMENTUM

Momentum = mass × velocity Momentum = $m \times v$

 $= kg \times ms^{-1}$

- a. i. (momentum \uparrow = mass \uparrow × velocity) Mass increase \rightarrow momentum increase
 - ii. (momentum \uparrow = mass × velocity \uparrow)

Velocity increase \rightarrow momentum increase

iii. Hypothesis

The bigger the mass / velocity, the greater the momentum.

b. Conservation of momentum

- i. During collision the total momentum of the system remains unchanged.
- ii. Total momentum = Total momentum before collision after collision

c. Types of collisions

i. Inelastic collision (bodies stick together after collision)

d. Applications of Momentum

- i. **Pile driver** (has high momentum due to big mass)
- ii. Bullet fired from a gun (has high momentum due to high velocity)
- iii. Steam roller (has high momentum due to big mass)

iv. Rocket

- The exhaust gases from the combustion chamber of a rocket escape from the back with great force.
- This creates a great momentum backwards.
- This backward momentum creates an equally big forward momentum, which pushes the rocket forward (This uses the principle that every action creates an equal and opposite direction)

e. Safety Measures in Motor Vehicles

- i. Force = rate of change of momentum
 - _ Change of momentum

Time taken

Final momentum - Initial momentum

Time taken

Force
$$\mathbf{F} = \frac{mv - mu}{t}$$

ii. **F**
$$\downarrow = \frac{mv - mu}{t \uparrow}$$

Note: Force is reduced, when time taken is increased

f. Parts of the motor car are specially designed to increase the time taken in order to reduce the force.

- i. has front and rear crumple zones to absorb force.
- ii. has soft bumper to increase the time of collision
- iii. has air bags / safety belt to reduce the impact.

Archimedes' Principle

Note: Denser water such as seawater which contain salt produce bigger upthrust. The denser the water, the greater the upthrust / the lighter the object float.

- When an object is immersed in water,

- i. the object experience an upthrust
- ii. the upthrust is equal to the weight of water being displaced
- iii. the object loses some weight

Application of Archimedes' Principle

1. Plimsoll line

- show how much the ship can be safety loaded when sailing in the sea

2. Submarine

- A submarine has ballast tanks. The submarine becomes dense and submerged in the sea when the ballast tanks are filled with the sea water.
- The submarine becomes less dense and rises to the surface when the ballast tanks are emptied.

Application of Bernoulli's Principle

1. Aerofoil

- i. The high speed of air moving above the aerofoil produces a low pressure.
- ii. The slower speed of air moving below the aerofoil produces higher pressure.
- iii. The differences of pressure cause an uplift force on the aerofoil.

2. Other apparatus using Bernoulli's Principle

Bernoulli's Principle

- States that the pressure decreases when the speed of fluid / gas increases.

CHAPTER 7 SYNTHETIC MATERIALS IN INDUSTRY

1.a. Polymer is along chain of molecules / monomers that are combined together.b.

2. Comparison

C.

Natural rubber	Synthetic rubber
Similarities	
 Both are carbon compounds Insulator to electricity Both exist as polymers 	
Differences	
- Very elastic	- Less elastic
- Not so airtight / permeable	- Airtight / non-permeable
- Low heat tolerance	- High heat tolerance
- Good absorber of sound and pressure	- Poor absorber of sounds and pressure
- Easy to vulcanize by sulphur atoms	- Difficult to vulcanize by sulphur atoms
- Easy to oxidise / unstable	- Difficult to oxidise / stable
- eg.: Latex (glove, raincoat)	- eg.: Neoprene, Thiokol, SBR (tyre. Stopper. hoses)

FORM 5

Chapter 8 Electronic and Information and Communication Technology (ICT)

3. Radio Reception System

INGAT: Tips diberi berdasarkan Nota bukan soalan kerana bentuk soalan tidak diketahui.

Terms & Conditions

- The information provided is for education purposes only and should not be considered as leak of questions paper.
- The organiser disclaims all liability for any loss, damage or personal suffered directly or indirectly from reliance on such information.
- The tips provided are considered as forecast questions and there is no warranty of its accuracy.
- However all effort has been made to provide the most possible tips towards the real examination.